

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 1 -]

DAIM Edge Computing Platform
OPERATIONS MANUAL

Revision 14, 30.05.2023

No liabi lity is assumed for any damage caused by applying examples contained in this document.

Copyright by DAIM GmbH, All rights reserved

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 2 -]

1. ABOUT THIS DOCUMENT - 4 -

2. ARCHITECTURE - 5 -

2.1. OVERVIEW - 5 -
2.2. DAIM EDGE-DEVICE MANAGEMENT PLATFORM - 5 -
2.3. DAIM STAGING CONCEPT - 6 -
2.4. K8S CLUSTER - 6 -
2.5. E3 ENDPOINT HOST - 7 -
2.6. DEPLOYMENT HOST - 8 -
2.7. EDGE-DEVICES - 8 -

3. EDP CLUSTER DEPLOYMENT - 10 -

3.1. SETUP DEPLOYMENT ENVIRONMENT - 10 -
3.1.1. Tools - 10 -

3.2. SECRET MANAGEMENT - 10 -
3.2.1. Create the GPG key-pair - 11 -
3.2.2. Create secrets manifests - 11 -

3.3. EXTERNAL COMPONENTS - 13 -
3.3.1. Assign Load Balancer Id and E3 IP Address - 13 -

3.4. INITIALIZE THE CLUSTER - 13 -
3.4.1. Initialization steps - 14 -

3.5. MANUAL STEPS - 14 -
3.5.1. Initialize and Unseal Hashicorp Vault - 14 -
3.5.2. Check if deployment was successful - 15 -
3.5.3. Restore Database Backups in Alibaba Cloud - 16 -
3.5.4. EDP-K8S Folder Structure - 16 -

3.6. UPDATE EDP SOFTWARE STACK - 16 -
3.7. UNINSTALL - 18 -
3.8. FLUX/KUBERNETES CHEAT SHEET - 19 -
3.9. TROUBLESHOOTING - 19 -

3.9.1. Check status of flux resources - 19 -
3.9.2. Known errors - 19 -
3.9.3. Check status of apps - 19 -
3.9.4. Check vault status - 20 -
3.9.5. Ask the monitoring system - 20 -

4. E3 SERVER DEPLOYMENT - 23 -

4.1. REQUIREMENTS - 23 -
4.2. DNS - 23 -
4.3. FIREWALL - 24 -
4.4. CUSTOM TLS TRUST - 24 -
4.5. DOCKER INSTALLATION - 24 -
4.6. E3 DEPLOYMENT - 25 -

4.6.1. Configuration setup - 25 -
4.6.2. Deployment - 25 -

4.7. POST-DEPLOYMENT STEPS - 26 -
4.7.1. Package synchronization setup - 26 -
4.7.2. Known Issues - 26 -

4.8. ERROR CONNECTING CONTAINER TO NETWORK BACKEND_NETWORK - 26 -

5. EDGE-DEVICE - 27 -

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 3 -]

5.1. PROVISIONING OF AN EDGE-DEVICE FROM PC - 27 -
5.2. REMOTE ACCESS TO AN EDGE-DEVICE (IN DEVELOPER MODE ONLY) - 28 -
5.3. EDGE-DEVICE DISK STORAGE - 29 -

6. CHANGE LOG - 30 -

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 4 -]

1. About This Document

This comprehensive operations manual is specifically designed for operators of the DAIM Edge
Computing Platform. Its primary purpose is to provide detailed instructions on deploying,
maintaining, and configuring the DAIM Management Platform, which operates in the cloud and
oversees a network of Edge- and IoT devices.

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 5 -]

2. Architecture

2.1. Overview

The DAIM Edge Computing Platform consists of two major building blocks:

1. The cloud-based DAIM Management Platform for administration of IoT devices and
2. The DAIM Edge-OS, a Linux Debian based software operating on the Edge-Devices.

2.2. DAIM Management Platform (EDP)

A Kubernetes cluster (K8s) is used to orchestrate the microservices based management platform. The
platform a REST API for automating business processes and a Web-UI for manual administration and
monitoring.

Fig. 1 - Overview of the DAIM Edge Computing Platform

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 6 -]

Fig. 2 - WebUI of the DAIM Management Platform. The screenshot shows the Edge-Device management tab.

2.3. DAIM Staging Concept

Usually, the platform is deployed on multiple different environments to stage future updates and
releases, rather than deploying new features directly to the production environment. DAIM's
recommendation is to have three distinct stages: TESTING, STAGING, and PRODUCTION:

• PRODUCTION: https://edp-portal.production.api.<customer>.net
• STAGING: https://edp-portal.staging.api.<customer>.net
• TESTING: https://edp-portal.testing.api.<customer>.net

Every update should first be deployed to the Testing environment. After successful tests by all
stakeholders, the update is deployed to the Staging environment, where a release candidate can be
tested under production similar conditions.

Once the release candidate is successfully tested, it finally can be deployed to the productive
environment.

2.4. K8s Cluster

2.4.1. Infrastructure Pods

The following open-source licensed infrastructure related pods are available in the cluster:

• Loki: service log aggregation
• Prometheus: service metrics aggregation
• Grafana: dashboards for cluster monitoring
• Kyverno: declarative policy management

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 7 -]

• Vault: Hashicorp vault for Edge-Device certificate management
• Keycloak: Identity and Access Management service used for authentication and authorization
• Postgres: relational database server

o Backups are created by a CronJob named “pgbackup” that is running scheduled “0 */3
* * *” (every 3 hours). This job dumps all postgres databases and stores the dumps to
the OSS bucket “edp-postgres-backup” on endpoint “oss-eu-central-1-
internal.aliyuncs.com” in a separate folder for every environment (testing, staging,
production)

o The OSS bucket “edp-postgres-backup” must be configured to remove outdated
dumps (e.g. older that 7 days).

• Nginx Ingress Controller: Load balancer for accessing services running in the cluster
• Kubernetes Operators:

o Platform-operator: deploy DAIM micro-services and their dependencies
o Keycloak-operator: deploy keycloak entities like clients, users or realms
o Flux-controllers: deploy cluster components by reading manifests from the OSS bucket

“edp-manifests”
o Cert-manager: create/update SSL certificates

2.4.2. EDP Pods

This services are part of the DAIM technology stack and are part of the Management Platform
• Portalgateway: API gateway for external requests
• Masterdata: service to manage customers and users
• Injectionmoulding: service for managing machines
• Datadirectormonitoring: service for heartbeat, notification, websocket management
• Datadirectormanagement: service for Edge-Devices, deployments, containers
• Devicemanagement: service providing REST API for external requests
• Onboarding: service for onboarding new Edge-Devices (create client certificates)
• Edpgateway: service providing REST API for Management Web UI
• Servicemanagement: internal service registry (Eureka, Spring Boot Admin)
• Portal: Device Management Web UI (Angular Application with NGINX)

2.5. E3 Endpoint Host

In addition to the K8s cluster, there is also a dedicated host outside the cluster for communication
with the Edge-Devices via the internet. This host is called “E3” (=External Edge-device Endpoint). This
host is the single endpoint for all requests that Edge-Devices send to the platform. All Edge-Devices
are allowed to communicate with the E3 server only.

All requests are handled by an Apache2 docker container on port 443 (HTTPS). Each request is
validated using SSL client certificate validation except for requests to the “/onboarding/**” URL.
These requests manage the onboarding of new Edge-Devices in order to download client certificates
from the backend to the Edge-Device.

In case an Edge-Device is removed from the platform it’s certificate will be revoked and added to the
Certificate Revocation List (CRL) that Apache2 is using for client certificate validation.

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 8 -]

2.6. Deployment Host

For maintenance issues there is another dedicated host that provides all necessary tools, credentials
and checked out repositories for accessing the EDP infrastructure.

2.7. Edge-Devices

An Edge-Device is the physical entity used to connect any IoT device (usually a production machine or
a plant) to any backend service or platform. These devices are provisioned using the DAIM Install
Server either during the production process by the device manufacturer or by the device operator.

The install server is also available as VDI (VirtualBox image) for setting up Edge-Devices in a specific
development mode.

After provisioning, the Edge-Devices do not contain any credentials for accessing the Management
Platform EDP. They must be initially onboarded before they can be used. For a successful onboarding
an internet connection is required

The onboarding is done via the Edge-Device configuration web frontend by connecting a computer to
the support LAN port of the device. On this network interface the devices host a web server with the
configuration UI.

Fig. 3 – Network configuration and onboarding can be done via connecting to the WebUI via LAN Support Port.

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 9 -]

The necessary steps to perform onboarding are described in the Quick Start Guide that is shipped
together with the Edge-Devices. After setting up the network connection a valid token must be
entered which is provided by the EDP and can be found in the Management UI.

Upon successful validation of the token, a Certificate Signing Request (CSR) is sent to the onboarding
endpoint and after checking the request for validity, a client certificate is sent back to the device. This
certificate is from now on used for communicating with the EDP and permits access to all E3/EDP
services.

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 10 -]

3. EDP Cluster Deployment

The k8s-edp git repository (https://bitbucket.org/<customer>/k8s-edp/src/master/) contains the
deployment description of the DAIM Edge-Device Platform, targeting a k8s-cluster in the dedicated
cloud. Flux (see https://fluxcd.io) is used for applying the manifests of the EDP cluster components,
thus Flux must be installed in a preliminary step on the cluster.

The latest information for the cluster deployment is checked in to the repository as README.md.

3.1. Setup deployment environment

This section describes the preliminary setup that is required in order to perform cluster deployments
on Kubernetes.

3.1.1. Tools

In order to execute the init-scripts and publish the manifests these tools are needed:

• kubectl (https://kubernetes.io/docs/tasks/tools/)
• flux CLI (https://fluxcd.io/docs/installation/)
• ossutil (https://partners-intl.aliyun.com/help/doc-detail/120075.htm)
• gnupg
• sops (https://github.com/mozilla/sops)
• ansible 2.10+ (pip install ansible)
• helm (https://helm.sh)
• watch

Configure kubectl and ossutil according to their documentation with a user that has the necessary
privileges on the cluster and OSS Bucket.

Ansible must be installed in version 2.10+. In Ubuntu, it is necessary to remove the apt package and
install it via pip:

pip install ansible
pip install kubernetes
open a new shell to use updated symlinks
bash

3.2. Secret management

Flux uses a GPG key pair for encrypting/decrypting secrets in Kubernetes. The secret contents in the
Bucket need to be encrypted with the GPG public key using a tool called sops. When the secrets are

mailto:office@daim.tech
https://bitbucket.org/%3ccustomer%3e/k8s-edp/src/master/
https://fluxcd.io/
https://kubernetes.io/docs/tasks/tools/
https://fluxcd.io/docs/installation/
https://partners-intl.aliyun.com/help/doc-detail/120075.htm
https://github.com/mozilla/sops
https://helm.sh/

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 11 -]

fetched by flux, flux needs the corresponding GPG private key for decryption. Thus, a secret
containing the private key needs to be added to the cluster before the deployment can start. For
each environment, the public key and a matching sops-configuration needs to be present in the
environment-specific secret-folder (secrets/<environment>).

3.2.1. Create the GPG key-pair

The key-pair for encrypting the cluster secrets needs to be created before initialization. The private
key needs to be stored in the cluster-secret named "cluster-sops-gpg" in the namespace "flux-
system". The public key goes to the folder containing the environment-specific secrets
(secrets/<environment>).

The script create-gpg.sh creates a key-pair and also creates the necessary files which need to be
copied into the secret-folder. The script needs a key-name and comment which need to be provided
as arguments. If a key with the given name already exists it will not be overwritten.

Additionally, an output-path needs to be provided where the script will create all necessary files. But
be aware that the created secret contains the GPG private key and therefore must NOT be
committed into any VCS.

create-gpg.sh "EDP-staging" "encrypting secrets for flux" .secrets/gpg

The output directory contains three files:

• .sops.pub.asc - GPG public key
• .sops.yaml - configuration for sops, so it knows which key to use for encryption
• secret.yaml - secret containing the GPG private key

The ".sops*"-files need to be copied into the environment-specific secret-folder
"secrets/<environment>". The secret.yaml is applied to the cluster by the init_cluster.sh script.

3.2.2. Create secrets manifests

The script create-secrets.sh creates and encrypts all needed secrets to the environment specific
secrets-folder. These only contain the encrypted values of the secrets, not the unencrypted secret
manifest itself, which is created using the kustomize secretGenerator.

All secrets need to be Base64-encoded strings and defined as environment variables prior to
executing the create-secrets.sh (or pipeline-deploy.sh) script.

The secrets containing passwords must not contain some special characters ('\n', '\r', '@', ':', '&', '?',
etc.) as this might lead to problems in the apps using the values. The create-secrets script checks for
those values and will not accept them. You should use the script gen-pass.sh for creating your
passwords:

./gen-pass.sh <length> ['base64']

mailto:office@daim.tech
https://kubectl.docs.kubernetes.io/references/kustomize/kustomization/secretgenerator/

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 12 -]

Example to generate a 16-character password with base64 encoding:

./gen-pass.sh 16 base64

Notes:

Some passwords are used in JDBC connection strings or URLs thus all contained characters must be
valid in JDBC URLs

A secret can contain multiple environment variables (e.g datadirectormanagement-files) that are
then all available inside the pod.

Environment variable Secret name(s)

GRAFANA_ADMIN_PASSWORD grafana-credentials

KEYCLOAK_ADMIN_PASSWORD credential-keycloak

KEYCLOAK_POSTGRES_PASSWORD keycloak-db-secret

POSTGRES_ADMIN_PASSWORD postgres-admin-credentials, pgbouncer-admin-credentials

VAULT_DB_PASSWORD vault-db-credentials
ISSUER_CA_CRT issuer-ca

ISSUER_CA_TLS_KEY issuer-ca

DDM_SSH_PRIVATE datadirectormanagement-files

DDM_SSH_PUB datadirectormanagement-files

LOKI_INGRESS_BASIC_AUTH loki-basic-auth

The following values are part of the GPG key the EDP uses to sign commits to Edge-Device
repositories. These values are not environment-specific.

Environment variable Secret name

DOCKER_PULL_JSON docker-pull

DDM_REV datadirectormanagement-files

DDM_KEY1 datadirectormanagement-files

DDM_KEY2 datadirectormanagement-files

DDM_GPG_CONF datadirectormanagement-files

DDM_PASSPHRASE datadirectormanagement-files

DDM_PUBRING datadirectormanagement-files

DDM_TRUSTDB datadirectormanagement-files

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 13 -]

3.3. External components

All components used in the deployment can be installed from the git repositories. In order to be
independent of a stable connection to those repositories, the deployment assumes that the
necessary files from the repositories are available in an OSS Bucket.

The script update-dependencies.sh executes all the following commands and is used by the pipeline
to deploy the dependencies automatically if they were changed.

These dependent repositories only need to updated when a version update of one of these
components is done.

3.3.1. Assign Load Balancer Id and E3 IP Address

Provide the correct loadbalancer id for your environment in file cluster-
infrastructure/<environment>/nginx.patch.yaml:

...
annotations:
 service.beta.kubernetes.io/alibaba-cloud-loadbalancer-id: "<loadbalancer-id>"
...

Provide IP address of E3 server host in file apps/<environment>/patches/global.env.patch.yaml:

...
- op: add
 path: /spec/podTemplate/spec/containers/0/env/0
 value:
 name: E3_HOST
 value: <e3-ip-address>

3.4. Initialize the cluster

To initialize flux for managing the cluster, the runtime components of flux and manifests describing
the initial entrypoint need to be deployed manually. The script init-cluster.sh executes the necessary
commands which are described in the following section.

Run shell script:

./init-cluster.sh <kubectl-context> <environment> <sops-gpg-secret-file>

The script takes three arguments:

• kubectl-context: Name of the context from the local kubectl-installation that should be used.
• environment: Which environment of the deployment should be used to manage the cluster.
• sops-gpg-secret-file: A file containing the secret with the private key that should be used to

decrypt the secrets of the deployment. The matching public key needs to be present in the
environment-specific secrets-folder, see repository folder Secret management for details.

mailto:office@daim.tech
https://bitbucket.org/kmooon/k8s-edp/src/0fe56a4c0b3b3f9b56ee8ea37a9b5a8d7ce86bff/init-cluster.sh

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 14 -]

3.4.1. Initialization steps

1. activate the kubectl-context
2. install flux using the CLI flux install
3. apply the secret containing the GPG private key
4. create the flux bucket for pulling the manifests
5. create the kustomization referencing the entry path of the deployment relative to the root of

the repo (deploy\<environment>)

 Warning: do not run the init-cluster.sh script on already installed clusters, as this may
affect running services and components

3.5. Manual steps

On first-time deployment of a new cluster, there are some manual steps necessary in order to
complete the initialization of several components. These steps are described here.

3.5.1. Initialize and Unseal Hashicorp Vault

On first cluster installation, the Hashicorp vault pod is created by the vault helm chart (see chapter
2.4.1) in namespace vault with name vault-0 and started automatically. However, the vault comes
uninitialized and sealed. Therefore, we provide an ansible-playbook to initialize and unseal the vault
in subfolder vault.

Before the playbook can be executed successfully the vault-pod needs to be ready. Check the status
of the vault pod with the following command:

kubectl get pods -n=vault vault-0 -w

This might take some time, as the CronJob which creates the database runs every 5 minutes, check
the status of the job with the following command:

watch -n 1 kubectl get cronjobs.batch -n=postgres postgres-dba

If the column "Last Schedule" has a value the job ran at least once.

If everything is fine, go to the directory ./vault and execute the commands described below. In order
to be able to decrypt secret information we use ansible-vault for this manual step. Thus, there must
exist a file vault-pwd.txt in folder ./vault that contains the ansible vault password for the checked in
ansible secret files. The content of this file is the ansible-vault password for decrypting the credential
information inside the playbook. It can be obtained from DAIM and must be kept secure. (Note: for

mailto:office@daim.tech
https://fluxcd.io/docs/cmd/flux_install/
https://fluxcd.io/docs/components/source/buckets/
https://fluxcd.io/docs/components/kustomize/kustomization/

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 15 -]

convenience, the password file is already present on the deployment host in folder
/home/devops/k8s-edp/vault).

Supported environments for the run.sh script are:

• testing
• staging
• production

Run the following commands to initialize the vault in your environment:

cd vault
ansible-galaxy collection install -f -r requirements.yml
./run.sh <environment> vault

This initializes the vault, fetches the root token and writes it to the vault secret that is attached to
pod vault-0 (usually named vault-token-XXXXX). In a second step, this root token is used to unseal
the vault for the first time. This operation reveals 3 unseal keys that are also stored in the vault
secret and are used to automatically unseal the vault when the pod restarts at a later point in time.
The root token and the unseal keys are mounted to the /var/run/secrets path inside the container.
Automatic unsealing is done by the postStart script of the vault pod using the vault CLI that is defined
as follows:

if [[-f /var/run/secrets/kubernetes.io/serviceaccount/unseal_keys]]; then
 echo $(date) waiting for vault;
 sleep 5;
 echo $(date) auto-unsealing vault;
 for line in $(cat /var/run/secrets/kubernetes.io/serviceaccount/unseal_keys); do
 vault operator unseal $line;
 done;
 vault status;
 echo $(date) vault unsealed successfully;
fi

Thus, after restart the vault log should contain a line showing that the unsealing was successful:

Wed Nov 10 13:07:57 UTC 2021 vault unsealed successfully

3.5.2. Check if deployment was successful

If all apps show status 'Ready', the deployment was successful, and the apps are running:

kubectl get apps -A

Check if vault is ready:

curl https://edp-service.api.testing.<customer>.internal/vault/v1/sys/health -i

Check the web frontends if ingress and routing is setup correctly:

• EDP Portal: https://edp-portal.api.testing.<customer>.net/device-management
Note: On first time installation a user “admin” with password “spartan-fussy-thereby-
taxpayer” is created

• Grafana: https://grafana.api.testing.<customer>.net

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 16 -]

3.5.3. Restore Database Backups in Alibaba Cloud

Service databases are backed up in a CronJob “pgbackup” every 3 hours as described in chapter 1.
These backups are in fact postgres database dump files that are copied to the OSS bucket “edp-
postgres-backup”. Postgres dumps are created in “custom” format (=binary) so restoring can be done
easily without worrying about constraints and table order.

For convenience we provide a script restore-pgbackup.sh in the root folder of the k8s-edp bitbucket
repository (the given example restores database masterdata in cluster testing):

./restore-pgbackup.sh testing masterdata

This script performs the following commands in order to restore these dumps to the databases that
are automatically created by the cluster deployment via the platform-operator from a Linux host that
has access to the cluster:

LATEST=$(ossutil64 ls oss://edp-postgres-backup/testing/masterdata/ -s | tail -n 4 | head -n 1)
ossutil64 cp $LATEST /tmp/dump.tar --force
kubectl cp /tmp/dump.tar postgres-server-0:/tmp/dump.tar -n postgres -c postgres
kubectl exec -i -t -n postgres postgres-server-0 -c postgres -- bash -c "psql -U postgres -w -c \"ALTER
DATABASE masterdata CONNECTION LIMIT 0; SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE
datname = 'masterdata';\""
kubectl exec -i -t -n postgres postgres-server-0 -c postgres -- bash -c "pg_restore -Fc -c -C -v -d
postgres -U postgres /tmp/dump.tar"

Note: You need to have a valid kubectl context pointing to the desired cluster (i.e. <customer>-
testing) and you need to define valid OSS credentials in ENV for accessing the bucket to download
the DB dump files (see chapter 2.2.1):

• OSS_ENDPOINT
• OSS_KEY_ID
• OSS_KEY_SECRET

3.5.4. EDP-K8S Folder Structure

The edp-k8s repository contains all manifests for deploying the whole K8s cluster for the Edge-Device
Management Platform (EDP).

3.6. Update EDP Software Stack

The EDP software stack is depicted in chapter 1 on the right side as “EDP Adds Pods”. These services
are managing the Edge-Devices and their deployments. The corresponding Kubernetes Deployment
manifests can be found in the edp-k8s bitbucket repository in folder apps/base. This folder contains
the App custom resource definitions for each pod. As it should be possible to have different software

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 17 -]

versions running in different environments there is also a kustomization folder for each environment
in folder apps:

• testing
• staging
• production

This folder contains environment-specific kustomizations for each of the EDP apps (e.g. hostnames,
domain names, routes, environment variables, …). The image tags for the deployed container images
are stored in the file kustomization.yaml in each environment folder under variable images with an
entry for each app containing name, image and image tag. In order to upgrade the EDP software
stack it is thus sufficient to update the value “newTag” for each app.

Docker images of new releases of apps are automatically pushed to the DAIM and Customer Cloud
registry by the DAIM build pipeline in gitlab.unisoftwareplus.com.

New versions of apps will first be deployed to the testing environment by updating the entry in file
“apps/testing/kustomization.yml” in branch testing. Pushing the changes will trigger the bitbucket
pipeline and copy the changes to the OSS bucket in folder “testing”. This triggers a Flux reconciliation
inside the cluster which updates the modified container images and restart the corresponding pods.

During development, it is possible to use development images from DAIM artifactory in the testing
environment (e.g. newName: artifactory.unisoftwareplus.com/docker-
dev/datadirectormanagement, newTag: v2.4.0-2-ge4a6741), because we added the docker-pull-
secret for accessing the DAIM artifactory on the testing cluster only. On clusters “staging” and
“production”, however, deployed images must be available in the AliCloud Container Registry
<customer>-net-ecr-registry-vpc.eu-central-1.cr.aliyuncs.com/<customer>-edp-deployment.

Once tests of a new software version of one or multiple services on “testing” are successful, DAIM
builds a new release version of those services and pushes the image to the customer’s cloud. The
new release versions are then written to images -> newTag to apps/staging/kustomization.yaml and
the whole edp-k8s repository is merged from branch testing to branch staging (therefore, updates to
the base app definitions will also be migrated to staging). This triggers the update via the bitbucket
pipeline and Flux on staging to test the new release candidates in staging environment. When those
tests are successful, the whole images list can be copied from apps/staging/kustomization.yaml to
apps/production/kustomization.yaml and branch staging is merged to master. This triggers the
deployment of the latest releases to the production environment.

Merging new releases from one stage to the next stage should be accomplished by a pull request in
bitbucket with a manual approval by a second reviewer (4 eyes principle). The following merges
should be performed:

1. Pull request merge testing staging
2. Pull request merge staging master

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 18 -]

3.7. Uninstall

The short path to uninstalling everything is 'flux uninstall' but this does not completely clean up
everything in the correct order, as some CRDs have finalizers which cannot be executed after the
controller has been deleted.

 Warning: Uninstalling a cluster cannot be undone. All existing data inside the cluster
(databases, persistent volumes) will be deleted.

To correctly remove all resources from the cluster, the following steps need to be executed:

Wait a minute or so between each step, to be sure that all resource associated with the
kustomization have been removed.

1. Suspend reconciliation for the main kustomization to stop flux from recreating the deleted
kustomizations

flux suspend kustomization deploy

2. Remove the apps kustomization

flux delete kustomization apps -s

3. Remove the app-infrastructure kustomization

flux delete kustomization app-infrastructure -s

4. Remove the cluster-infrastructure and policies kustomization, but first check if the relevant
custom resources (Apps, keycloak) have already been deleted otherwise k8s cannot call the
finalizer as the controller-pods are already terminated.

kubectl get apps,keycloak –A
flux delete kustomization cluster-infrastructure -s

5. Remove the promtail-DaemonSet manually, because the pods try to connect to loki server
upon termination, which might not be reachable anymore. Then remove cluster-
infrastructure.

kubectl delete daemonset -n=loki promtail
flux delete kustomization cluster -s

6. Uninstall flux

flux uninstall -s

7. Wait until all namespaces except system namespaces are gone (status terminating is not
gone)

watch -n 1 kubectl get namespaces

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 19 -]

3.8. Flux/Kubernetes Cheat sheet

• Immediately refresh the bucket

flux reconcile source bucket --namespace flux-system cluster-bucket

• Immediately force reconciliation of kustomization

flux reconcile kustomization --namespace flux-system app-infrastructure

• Check status of the flux resources continually

watch -n 1 kubectl get gitrepositories,buckets,kustomizations,helmreleases -A

• Check the status of all apps

kubectl get apps -A

• Check if vault is unsealed

kubectl exec -n=vault vault-0 -- vault status

3.9. Troubleshooting

3.9.1. Check status of flux resources

All flux resources have a ready field, as soon as this field shows "True", everything should work as
expected from a deployment point of view. This means that the necessary resources were deployed
and the main pods are up and running.

If a resource displays "False" in the ready field, the status field gives a more detailed description,
hinting at the source of the error:

kubectl get buckets,helmcharts,kustomizations,helmreleases -A

3.9.2. Known errors

• Bucket Resource: “context deadline exceeded”: The download of the bucket ran into a
timeout. This should not happen regularly. If it does, the value in the field ‘timeout’ of the
Bucket resource should be increased.

• Kyverno Errors: failed calling webhook \"mutate.kyverno.svc-fail\": when updating
(=mutation) resources a request to kyverno is sent by a webhook definition. If however the
kyverno pod is down, this fails and thus no more resource updates are possible. The only
solution is to remove all kyverno webhooks at this point by running the following commands:
kubectl delete mutatingwebhookconfigurations/kyverno-resource-mutating-webhook-cfg
kubectl delete validatingwebhookconfigurations/kyverno-resource-validating-webhook-cfg

3.9.3. Check status of apps

The status field of an app shows if there have been any errors while reconciling the application
resources or if the expected pods are not running as expected.

mailto:office@daim.tech
https://fluxcd.io/docs/components/source/buckets/
https://fluxcd.io/docs/components/source/buckets/

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 20 -]

The following table shows the possible values of the field and its meaning

Status Description

reconciling The controller is currently processing this resource and creating the k8s-
resources based on the specification.

not ready The controller successfully finished the reconciliation but the requested pod(s)
are not ready yet.

ready The requested pod(s) for this app are ready.

reconciliation
failed

An error happened while reconciling the app manifest. In this case the
controller adds events to the app resource containing more details. If this is not
enough, the log of the platform-operator pod needs to be checked.

deleting The App-resource was deleted and the controller is currently performing the
necessary cleanup operations.

kubectl get apps -A

3.9.4. Check vault status

In order for vault to provide service, the pod needs to be ready, and the vault also needs to be
unsealed.The easiest way to check the status is calling the vault cli, which is installed in the vault
container.

kubectl exec -n=vault vault-0 -- vault status

The output shows the status of the vault server including the value "Sealed". If this field is true, the
automatic unsealing upon startup of the pod did not work. To analyse the reasons, the log of the
container needs to be checked.

3.9.5. Ask the monitoring system

The deployment includes prometheus to collect metrics from k8s and the running applications. To
access the metrics, a grafana instance with many default dashboards is deployed as well. To access
the dashboards, an ingress route “edp-portal.api.*. <customer>.net/grafana” is created.

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 21 -]

Grafana also uses keycloak as authentication server, the user “admin” should have all necessary
permissions.

When logged-in to Grafana and clicking on Dashboards > Manage a list of available dashboards as
depicted in the following image is available.

Fig. 4 All available Grafana monitoring dashboards

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 22 -]

The following dashboards are available:

Path Dashboard Name Brief description
apps Spring Boot Applications

This dashboard shows details about any spring boot
application, especially JVM-related metrics.

developers Pod Metrics + Logs This dashboard shows a quick overview of a Pod’s
CPU, Memory and Network usage and its logs.

infrastructure Hashicorp Vault This dashboard shows details of Vault operations.
infrastructure Keycloak Metrics This dashboard shows an overview of Keycloak

operations.
k8s Flux Cluster Stats This dashboard shows an overview of Flux

operations.
k8s Flux Control Plane This dashboard shows details about Flux

operations.
k8s Kubernetes Cluster

(Prometheus)
This dashboard shows a short overview of the
entire Kubernetes cluster.

k8s Kubernetes Cluster
Monitoring

This dashboard shows a detailed overview of the
entire kubernetes cluster.

k8s Kubernetes Ingress
Controller Dashboard

This dashboard shows the same data as the NGINX
Ingress controller dashboard.

k8s Kyverno This dashboard shows details about Kyverno
operations.

k8s NGINX Ingress controller This dashboard shows details about all routes in the
NGINX ingress controller. It can be used to get an
overview of which routes have problems.

k8s Prometheus 2.0 Overview This dashboard shows details about Prometheus
operations.

monitoring Alerts This dashboard is an overview over the active Alerts
in the cluster.

monitoring Loki This dashboard shows details about Loki
operations.

General Grafana Internals This dashboard shows details about Grafana
operations.

General State of the Deployment This dashboard shows an overview of the current
state of the Flux deployment, including when the
last reconciliation happened.

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 23 -]

4. E3 Server Deployment

The E3 server (=Edge-Device External Endpoint) is a dedicated virtual host that is responsible for
communication with Edge-Devices via the internet. It needs direct access to the Load Balancer
hosting the Ingresses of the EDP cluster in order to proxy the requests to the EDP services.

This virtual host is therefore running inside the same Alicloud virtual private cloud (VPC) as the k8s
cluster. Each environment has a dedicated E3 host that Edge-Devices are sending their requests to.
Edge-Devices can be switched from one environment to the other.

The following components are running on the E3 server:

• Apache2: request authentication, reverse proxying
• Notary: docker image signature verification
• Docker registry: hosts docker images for Edge-Devices
• Debian Packages: Debian OS package registry for Edge-Devices
• Git: Edge-Device repositories, machine repositories

4.1. Requirements

In order to be able to install a new E3 server you need a separate Linux-based deployment host from
which you can reach your prospective E3 server. This deployment host needs to have the Ansible
2.8+ installed with following additional collections:

• ansible.posix
• community.general
• community.crypto
• community.docker

The deployment is performed via an ansible script that needs to be cloned to the deployment host
from https://bitbucket.org/kmooon/edp-e3.git

This script will install an E3 server on any external target host with fresh CentOS 8 installation.

During installation the script needs access to the already installed and configured Vault inside the
K8s cluster.

4.2. DNS

Configure the DNS server so the host can reach the following subdomains in your selected domain
(e.g. testing.api. <customer>.net).

• edp-docker
• edp-git
• edp-monitoring

mailto:office@daim.tech
https://bitbucket.org/kmooon/edp-e3.git

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 24 -]

• edp-onboarding
• edp-packages
• edp-access

4.3. Firewall

Configure your firewall so the following ports are open:

Port Used by
443 Backend services for Edge-Devices
80 Let’s Encrypt SSL validation
2222 SSH maintenance access
9100 Prometheus node exporter

Make sure the E3 can reach the following EDP services in the K8s cluster:

• onboarding-service (curl should return 204)
curl https://edp-service.api.testing.<customer>.internal/onboarding/health -i

• monitoring-service (curl should return 202)
curl -X POST https://edp-
service.api.testing.<customer>.internal/monitoring/api/v1/monitoring/container -i -d {}

• vault (curl should return 200)
curl https://edp-service.api.testing.<customer>.internal/vault/v1/sys/health -i

If you use a firewall for outgoing traffic, ensure the Debian packages master repository is reachable
via 22/tcp (SSH).

4.4. Custom TLS trust

This step is only required if the host certificate(s) of your EDP services is signed by a custom CA which
is not well known.

The steps are to be executed on the target host.

1. Copy your CA chain to /etc/pki/ca-trust/source/anchors/
2. Run

update-ca-trust extract

4.5. Docker Installation

1. Install and start docker
dnf config-manager --add-repo=https://download.docker.com/linux/centos/docker-ce.repo
dnf install -y docker-ce
systemctl enable --now docker

2. Login to Cloud Container Registry (with service user)
docker login <customer>-net-ecr-registry-vpc.eu-central-1.cr.aliyuncs.com

3. The following images will be fetched by docker from Cloud during the ansible playbook run
(see chapter 3.6.2)

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 25 -]

• Apache2:
<customer>-net-ecr-registry-vpc.eu-central-1.cr.aliyuncs.com/<customer>-edp-
deployment/httpd-git

• Maintenance-Access:
<customer>-net-ecr-registry-vpc.eu-central-1.cr.aliyuncs.com/<customer>-edp-
deployment/ssh-maintenance-access

Warning: The password will be stored unencrypted in /root/.docker/config.json. Do not use your
personal credentials!

4.6. E3 Deployment

4.6.1. Configuration setup

The following steps are performed on your deployment host in the ansible/ subdirectory of your
cloned edp-e3 repository. These steps have already been done for the E3 deployment. You only need
to modify the playbook or hostfiles if you need to change a configuration. It is recommended to
clarify your changes with DAIM before deploying changes to E3 as this may have a negative effect on
the Edge-Device processing.

1. Create a credential file vars/<HOST>-credentials.yml containing the following 3 entries (see
next chapter for valid HOST names, YOUR_VAULT_TOKEN from vault-secret in Cluster, bitbucket
TOKEN from your bitbucket profile management https://id.atlassian.com/manage-
profile/security/api-tokens):
vars/<HOST>-credentials.yml
vault_root_token: YOUR_VAULT_TOKEN
git_pull_credential: https://user:TOKEN@bitbucket.org
device_repository_upstream: https://bitbucket.org/kmooon/edp-provisioning-master.git

2. Copy an existing e3 playbook and modify it for your needs (at least hosts and the path to the
included credential file)

3. Copy an existing appropriate variable file in host_vars/ and modify it for your needs
4. Add your host to the inventory file to the suitable groups (at least to group e3).
5. Check that ansible can reach the target hosts

ansible -m setup -u root HOSTNAME

Hint: You can fetch the vault token from the k8s cluster using:

kubectl get secret -n vault | grep vault-token
kubectl get secret -n vault vault-token-XXXX -o=json | jq -r '.data.root_token' | base64 -d

4.6.2. Deployment

Install common environment and tools to the E3 host. This is not required but highly recommended.

ansible-playbook common.yml -l HOSTNAME

Deploy the server components for E3 connected to the Cluster:

mailto:office@daim.tech
https://id.atlassian.com/manage-profile/security/api-tokens
https://id.atlassian.com/manage-profile/security/api-tokens

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 26 -]

ansible-playbook e3-alibaba.yml -l HOSTNAME

The host-specific settings are available in the folder ansible/host_vars. The following hosts are
relevant:

• e3-<customer>-testing
• e3-<customer>-staging
• e3-<customer>-production

4.7. Post-deployment steps

The following steps must be done after the initial E3 deployment.

4.7.1. Package synchronization setup

1. Read the ssh public key from packages user:
cat /home/packages/.ssh/id_ed25519.pub
ssh-ed25519 AA… packages@your-e3-server

2. Send the SSH key to DAIM hopferwieser@unisoftwareplus.com so it can be added to the
Debian master repository server (edge.unisoftware.plus)

3. Once the key is added to the server by DAIM, run Debian package sync on your E3 host
su - packages
sync-packages

4.7.2. Known Issues

None

4.8. Error connecting container to network backend_network

The deployment fails with following message: Error connecting container to network
backend_network

A restart of the docker daemon should fix the problem:

systemctl restart docker

mailto:office@daim.tech
mailto:hopferwieser@unisoftwareplus.com

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 27 -]

5. Edge-Device

Physical Edge-Devices are usually provisioned directly by your hardware supplier during the
production process via the DAIM install server.

This install server provides an automated installation procedure via ethernet and PXE boot. The
install server is always customized and contains the customer specific “configuration UI” and
onboarding endpoints that the Edge-Devices need to contact for device onboardind. The onboarding
endpoint look like:

• https://edp-git.api.production.<customer>.net
• https://edp-onboarding.api.production.<customer>.net

5.1. Provisioning of an Edge-Device from PC

The Install Server is provided by DAIM as VDI image, which can be booted on any PC with VirtualBox.

In this scenario the Edge-Device is directly connected to a laptop or PC (here called host) with an
ethernet cable and should be installed via PXE. The install server should run as VM via VirtualBox
(commands for a Linux host machine).

1. Configure the network interface on the host to use IP address 192.168.100.1/24.
ip addr add 192.168.100.1/24 dev enp0s31f6
ip link set enp0s31f6 up

2. Configure the first VM network adapter (Settings -> Network) as bridged
3. Start and login to VM
4. Configure the network interface on VM to use IP address 192.168.100.2/24.

ip addr add 192.168.100.2/24 dev eth0
ip route add default via 192.168.100.1

Note: The route command is important, otherwise the the perl module
Net::Address::IP::Local in /usr/local/sbin/filter-serverip.pl cannot detect the public IP address
and the IP replacing in the installer scripts will not work.

5. Start Dnsmasq
systemctl start dnsmasq

6. On startup of the Edge-Device, go to system BIOS select “PXE Boot”. In the boot menu select
your desired target endpoint:

a. Production
b. Staging
c. Testing

7. In next submenu, select desired release version
a. Release 0.5.9 (recommended)
b. Master
c. Develop

8. In next submenu, select installation variant
a. Development
b. Customer/Production

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 28 -]

5.2. Remote access to an Edge-Device (in developer mode only)

Please note, that by default any terminal access is disabled on Edge-Devices for security reasons!
Only Edge-Devices that are set up in developer mode can be accessed via secure shell (SSH).

DAIM will provide an SSH maintenance access service for production devices in a future release of
the Platform. This will allow access to any Edge-Device via a reverse SSH tunnel that is created from
the device to the platform backend services.

A how-to will be added to this document when the service is available.

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 29 -]

5.3. Edge-Device disk storage

An Edge-Device holds a 128 GB Industrial Grade SSD. The disk is partitioned in a 47 GB system
partition which holds the operating system and the docker environment, and a second partition used
for LVM snapshots and for the upgrading mechanism.

On the system partition, around 5 GB are used by the operating system and the DAIM services. Note
that this is only an estimated value, and it could be exceeded in the future if new space consuming
features are integrated. A maximum of 4 GB is reserved for log files.

As a consequence, around 35 GB of space are left for Docker containers, images and volumes (3 GB
are reserved for the operating system services).

Please note that volumes are deleted during major upgrades (e.g. 0.3.x -> 0.4.x) for versions < 0.6.1

Fig. 5 Illustration of the physical storage of an Edge-Device with 128GB HDD

mailto:office@daim.tech

DAIM GmbH | Linzer Straße 2-6 | A-4320 Perg | +43 7262 52834 | office@daim.tech | ATU75416337 | FN 531357h

[- 30 -]

6. Change Log

Date Version Change description
24.05.2023 Revision 14 Changelog added; General rework

mailto:office@daim.tech

	1. About This Document
	2. Architecture
	2.1. Overview
	2.2. DAIM Management Platform (EDP)
	2.3. DAIM Staging Concept
	2.4. K8s Cluster
	2.4.1. Infrastructure Pods
	2.4.2. EDP Pods

	2.5. E3 Endpoint Host
	2.6. Deployment Host
	2.7. Edge-Devices

	3. EDP Cluster Deployment
	1.
	3.1. Setup deployment environment
	3.1.1. Tools

	3.2. Secret management
	3.2.1. Create the GPG key-pair
	3.2.2. Create secrets manifests

	3.3. External components
	3.3.1. Assign Load Balancer Id and E3 IP Address

	3.4. Initialize the cluster
	3.4.1. Initialization steps

	3.5. Manual steps
	3.5.1. Initialize and Unseal Hashicorp Vault
	3.5.2. Check if deployment was successful
	3.5.3. Restore Database Backups in Alibaba Cloud
	3.5.4. EDP-K8S Folder Structure

	3.6. Update EDP Software Stack
	3.7. Uninstall
	3.8. Flux/Kubernetes Cheat sheet
	3.9. Troubleshooting
	3.9.1. Check status of flux resources
	3.9.2. Known errors
	3.9.3. Check status of apps
	3.9.4. Check vault status
	3.9.5. Ask the monitoring system

	4. E3 Server Deployment
	4.1. Requirements
	4.2. DNS
	4.3. Firewall
	4.4. Custom TLS trust
	4.5. Docker Installation
	4.6. E3 Deployment
	4.6.1. Configuration setup
	4.6.2. Deployment

	4.7. Post-deployment steps
	4.7.1. Package synchronization setup
	4.7.2. Known Issues

	4.8. Error connecting container to network backend_network

	5. Edge-Device
	5.1. Provisioning of an Edge-Device from PC
	5.2. Remote access to an Edge-Device (in developer mode only)
	5.3. Edge-Device disk storage

	6. Change Log

